Emotional Cellular-Based Multi- Class Fuzzy Support Vector Machines on Product’s KANSEI Extraction
نویسندگان
چکیده
It is an important methodology to extract product’s overall KANSEI images by evaluating Critical Form Features (CFF). In this paper, Multi-class Fuzzy Support Vector Machines (MF-SVM) employing Emotional Cellular (EC) model was presented to extract KANSEI images of product’s CFF. EC is a very special kind of semantics cell, which is defined on two-dimensional (Valence-Arousal) emotional space. The shell of EC covers the areas of the boundary of each emotional word that reflects its uncertainty, in common, a density function was employed to reflect this uncertainty. Firstly, product from features was mapped into an N dimensional vector. Secondly, the norm of vector space and the fuzzy membership of each element are calculated by using probability density function of EC including Single Gaussian Model (SGM) and Gaussian Mixture Model (GMM). Finally, One-Versus-Rest (OVR) for multiclass SVMs was addressed to deal with multi-dimensional KANSEI images. For new products, system will specify all CFFs by using MF-SVMs. A case study of mobile phone design is given to demonstrate the effectiveness of the proposed methodology.
منابع مشابه
Mining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM
Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...
متن کاملFuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring
There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...
متن کاملFuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring
There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...
متن کاملFault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملA QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES
Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only considers both accuracy and generalization criteria in a single objective fu...
متن کامل